Learning a fast transform with a dictionary
نویسندگان
چکیده
A powerful approach to sparse representation, dictionary learning consists in finding a redundant frame in which the representation of a particular class of images is sparse. In practice, all algorithms performing dictionary learning iteratively estimate the dictionary and a sparse representation of the images using this dictionary. However, the numerical complexity of dictionary learning restricts its use to atoms with a small support. A way to alleviate these issues is introduced in this paper, consisting in dictionary atoms obtained by translating the composition of K convolutions with S-sparse kernels of known support. The dictionary update step associated with this strategy is a nonconvex optimization problem, which we study here. A block-coordinate descent or Gauss-Seidel algorithm is proposed to solve this problem, whose search space is of dimension KS, which is much smaller than the size of the image. Moreover, the complexity of the algorithm is linear with respect to the size of the image, allowing larger atoms to be learned (as opposed to small patches). An experiment is presented that shows the approximation of a large cosine atom with K = 7 sparse kernels, demonstrating a very good accuracy.
منابع مشابه
A New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain
Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...
متن کاملSpeech Enhancement using Adaptive Data-Based Dictionary Learning
In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...
متن کاملSparse Time-Frequency decomposition by dictionary learning
In this paper, we propose a time-frequency analysis method to obtain instantaneous frequencies and the corresponding decomposition by solving an optimization problem. In this optimization problem, the basis to decompose the signal is not known a priori. Instead, it is adapted to the signal and is determined as part of the optimization problem. In this sense, this optimization problem can be see...
متن کاملA Novel Face Detection Method Based on Over-complete Incoherent Dictionary Learning
In this paper, face detection problem is considered using the concepts of compressive sensing technique. This technique includes dictionary learning procedure and sparse coding method to represent the structural content of input images. In the proposed method, dictionaries are learned in such a way that the trained models have the least degree of coherence to each other. The novelty of the prop...
متن کاملA Novel Image Denoising Method Based on Incoherent Dictionary Learning and Domain Adaptation Technique
In this paper, a new method for image denoising based on incoherent dictionary learning and domain transfer technique is proposed. The idea of using sparse representation concept is one of the most interesting areas for researchers. The goal of sparse coding is to approximately model the input data as a weighted linear combination of a small number of basis vectors. Two characteristics should b...
متن کاملConvolutional Dictionary Learning through Tensor Factorization
Tensor methods have emerged as a powerful paradigm for consistent learning of many latent variable models such as topic models, independent component analysis and dictionary learning. Model parameters are estimated via CP decomposition of the observed higher order input moments. However, in many domains, additional invariances such as shift invariances exist, enforced via models such as convolu...
متن کامل